
C2B: PLAYING BREAKOUT WITH DQN

Learning to Play Breakout Using Deep Q-Learning
Networks

Gabriel Andersson and Martti Yap

Abstract—We cover in this report the implementation of a
reinforcement learning (RL) algorithm capable of learning how
to play the game Breakout on the Atari Learning Environment
(ALE). The non-human player (agent) is given no prior infor-
mation of the game and must learn from the same sensory input
that a human would typically receive when playing the game.

The aim is to reproduce previous results by optimizing the
agent driven control of Breakout so as to surpass a typical human
score. To this end, the problem is formalized by modeling it as
a Markov Decision Process. We apply the celebrated Deep Q-
Learning algorithm with action masking to achieve an optimal
strategy.

We find our agent’s average score to be just below the human
benchmarks: achieving an average score of 20, approximately
65% of the human counterpart. We discuss a number of
implementations that boosted agent performance, as well as
further techniques that could lead to improvements in the future.

Index Terms—Breakout, Deep Q-learning, Markov decision
process, Reinforcement learning.

I. INTRODUCTION

The topic of artificial intelligence (AI) has become increas-
ingly popular in the recent years and is now becoming standard
technology in many fields [1]. This includes Machine Learning
(ML), a subset of AI, where computer algorithms learn to
perform tasks based on patterns and inference rather than
explicitly programmed instructions. Common applications of
this include image classifiers, where ML algorithms learn to
characterise features in an image. This typically falls under
the ML category of supervised learning — where the algo-
rithm learns by training on data pre-labelled with its inherent
features.

Reinforcement learning (RL) is another machine learning
technique in which the algorithm or agent makes decisions in
the context of an environment — wherein it aims to maximize
a given optimality criterion. The decision or action taken by
the agent can at every time step influence the environment.
As a result, the agent has the means to influence which
sequences of data are available to it, setting it apart from,
for instance, supervised learning. A further distinction is that
the data available to an RL agent is unlabelled, and received
sequentially as the environment is explored.

Video games have gained popularity as applicable domains
for RL implementations. Aside from being relatively well
known to a wider audience, games also provide an inexpensive
and risk-free environment for agents. The popularity can also
be attributed to the potential they offer in terms of repeatability
and concurrency, speeding up training. Lastly, you may tailor
your choice of game; allowing you, for instance, to test the

generality of your algorithm on similar games. One such
example of the latter is [2], in which the same agent was used
to learn a wide range of Atari 2600 games on the Arcade
Learning Environment (ALE) [3].

A common challenge faced by RL algorithms is associating
actions with long-term and short-term rewards. The difficulty
lies in that the rewards and the actions that caused them can
be separated by any number of time-steps. In order to learn,
the agent is left with the challenge of associating actions with
their corresponding rewards.

Further difficulties are met in practice when the environ-
ments are very large. Reinforcement learning algorithms like
Q-learning [4] rely on fully exploring an environment to
achieve an optimal behaviour. As a result, RL methods were
difficult to successfully apply to video games prior to the
addition of Deep Learning elements. Progress was made in
part due to the application of function approximators in the
form of neural networks (DQN). These approximations did
away with the need to fully explore an environment; making
larger environments like video games a feasible application
for RL.

Among the first of these applications was Deep Q-Learning
which was introduced by [5]. This new implementation does,
however, have its drawbacks. We, for instance, forgo all the
theoretical guarantees of convergence that algorithms like Q-
Learning offered. There arise also issues in the repeatability
of the training process. Since the results are simulation based,
they may differ from one run to another.

It is therefore of interest to see if these results can be
reproduced independently. With this in mind, we aim to
implement a reinforcement learning agent capable of learning
how to play Breakout on ALE, as done in [5]. To measure the
success of the agent we will compare the average score to that
of an experienced human player, as recorded in [5].

II. BACKGROUND

The act of playing Breakout is a decision making problem
that we formalize as a discrete-time t ∈ N, finite state Markov
Decision Process (MDP).

A. Definitions

We define an MDP as a tuple (S,A, P, r, γ) where
• S is a finite set of states.
• A is a finite set of actions.
• P is a transition probability function, such that
P : S × A → ∆(S), where ∆(S) is a distribution over
the states.

C2B: PLAYING BREAKOUT WITH DQN

• r is a reward function such that r : S×A → [0,K] where
K > 0 is a bounded constant.

• γ is a discount factor, γ ∈ (0, 1).

We can see that all transition probabilities P (st+1|st, at),
fulfill the Markov Property. That is, the probability of the next
state only depends on the current state.

We define a policy π as a sequence of distributions over
actions given the amount of information available at time t. In
particular, we will restrict our attention to stationary markov
policies π : S×A → [0, 1]. We do so because it is known that
optimal policies π∗ for our class of MDPs belong to stationary
Markov policies (Theorem 6.2.10 in [6]).

For a policy π we define the state-value function vπ(s) as
the expected cumulative discounted reward or expected return.
That is,

vπ(s) = Eπs

[∞∑
t=1

γtr(st, at)

]
, (1)

where we make use of the discount factor γ and introduce the
notation Eπs to be the expected value given s, following policy
π. The goal of our agent is then to find the policy that satisfies
the optimal state-value function v∗(s) = maxπ vπ(s). Which
can also be expressed;

v∗(s) = max
a

[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)v∗(s
′)

]
. (2)

We can then in a similar fashion define the action-value
function qπ , which describes the expected return of taking
action a in state s and thereafter following policy π:

qπ(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)vπ (s′) . (3)

From here we introduce the optimal action-value function q∗
as the optimal value function upon taking action a, that is

q∗(s, a) = r(s, a) + γ
∑
s′∈S

P (s′|s, a)v∗ (s′) . (4)

Solving the MDP is now equivalent to finding q∗(s, a), since
one can then adopt a policy that selects the action that yields
the highest return at every time step.

B. Q-Learning

One approach of finding q∗ (and thereby the optimal policy
π∗), is called Q-learning. This is a model-free algorithm,
meaning that we do not aim to estimate the transition probabil-
ity function nor the rewards (P, r) of the MDP. The Q-learning
algorithm is given in Algorithm 1.

The algorithm starts by initializing q arbitrarily (line 1.)
and then applying a policy that selects an action at each
given time step t. Adopting a policy that always selects
at = argmaxa (q(st, a)), may initially seem advantageous.
However, this greatly limits the explored state-action space and
leads to over-reliance on the initial states. A common solution
to this exploration problem is to use the ε-greedy policy given
in the Q-learning algorithm (line 6.–11.). The convergence of

Algorithm 1: Q-learning algorithm
1: Define a convergence tolerance δ
2: Initialize q(s, a), for all s ∈ S, a ∈ A(s)
3: Define ε-greedy constant ε ∈ (0, 1)
4: Receive initial state s0

5: while ||qt (s, a)− qt+1 (s, a) || > δ for all s ∈ S, a ∈ A
do

6: sample ρ ∼ U(0, 1)
7: if ρ < ε then
8: select a random action uniformly at ∼ A
9: else

10: select at = argmaxa (q(st, a)).
11: end if
12: Do action at and observe r(st, at) and st+1

13:
qt+1 (st, at)← qt (st, at) +

α
[
r(st, at) + γmax

a
qt (st+1, a)− qt (st, at)

]
14: t← t+ 1
15: end while

q towards q∗ is then assured [4] p. 220, when applying the
step

qt+1 (st, at)←qt (st, at) +

α
[
r(st, at) + γmax

a
qt (st+1, a)− qt (st, at)

]
.

Here we introduce the learning rate α ∈ (0, 1), which
corresponds to how large learning steps we take at each
iteration, i.e. how much impact new information has on our
q-function. It makes use of Temporal difference (TD)-learning
[7] Chp. 6, meaning that we at every time step consider
r (st, at)+γmaxa q (st+1, a) to be the prediction of our future
return. Thus we rely on the fact that we are more certain about
the future returns at the next state st+1 than we are at st.

In order to achieve convergence of the q function, every
state-action q-value needs to be updated. The algorithm thus
relies on the possibility of visiting and learning from every
state-action pair. We could, in theory, use this algorithm and
thereby formulate an optimal strategy for Breakout. In practice,
this is however infeasible. The state space is much too large
and therefore a different approach is necessary.

C. Deep Q-Learning

To handle very large state spaces, we introduce a function
approximator q̂θ = q̂θ(s, a; θ), where θ ∈ RM is a vector that
parameterises the function approximator. These parameters
are in this case the weights in a neural network. This is
used in the Deep Q-learning algorithm which otherwise is
similar to Q-learning, where we at time t use the TD-target
r(st, at) + γmaxa q̂θ(st+1, a). To improve the approximation
q̂θ we define a Loss Function L(θ) and attempt to minimize
it,

L (θ) = E
[(
r(st, at) + γmax

a
q̂θ (st+1, a)− q̂θ (st, at)

)2
]
.

C2B: PLAYING BREAKOUT WITH DQN

The minimization is done by taking the semi-gradient of L(θ)
with respect to θ. That is,

∇θL (θ) =

E
[
2
(
r + γmax

a
q̂θ (st+1, a)− q̂θ (st, at)

)
∇θ q̂θ (st, at)

]
.

(5)
Estimating the expected value can be computation-

ally demanding, the mean of r + γmaxa q̂θ (st+1, a) −
q̂θ (st, at)∇θ q̂θ (st, at) has to be calculated for every accessi-
ble state-action pair. It is often more favorable to optimize
the loss function using stochastic gradient descent (SGD).
Optimizing the loss function is then done using the gradient
above without the expected value.

As introduced in Section I; this method has its drawbacks.
By using the state st+1 as our prediction at st we introduce
a bias in our trajectory towards q∗. We also have a strong
correlation between the samples if we perform the SGD on
consecutive frames. To avoid these correlations, we introduce
a concept formulated in [5] as Replay Memory D. The
transitions (st, at, rt, st+1) are stored in D, and the SGD
is carried out using subsets (batches) of the replay memory,
(sj , aj , rj , sj+1) ∼ D. This breaks the correlation and biases,
reducing oscillations and other unwanted behavior in the SGD.
Replay memory also enables the agent to learn from the same
transitions multiple times — leading to greater data efficiency
[5].

In order for SGD to converge, the target must be fixed.
Using temporal difference: the target in (5) depends on the
parameters that we are updating at every SGD step. We thus
have a moving target, which more or less ensures that the
SGD will not converge. The solution to this is to compute the
TD-targets with respect to fixed parameters Θ. These are then
updated to the current parameters θ after a specified number
(C) of learning steps. This yields a periodically stationary
target for the SGD,

∇θL (θ) =

2
(
r + γmax

a
q̂Θ (st+1, a)− q̂θ (st, at)

)
∇θ q̂θ (st, at) .

The full Deep Q-learning algorithm as described in [2] is
given in Algorithm 2. We note that it is always possible to
split the time horizon of the MDP into episodes, which in the
case of Breakout would correspond to one full game.

III. METHOD

A. Environment and Game Characteristics

In order for the agent to interact with our chosen game
environment we make use of the Open AI GYM library [8],
which emulates the games with no prior assumptions about
the controlling agent [8]. GYM is in turn built around the
Arcade-Learning-Environment (ALE) [3]. In a given time step
t the emulator accepts an action at out of the set of game-legal
actions A and returns a reward along with a frame ft, a 210×
160 RGB image. Points (or rewards) are assigned by GYM
in the same way as any human player would receive them.
Points are received when the ball touches a block, removing
it from the game after rebounding the ball back towards the

Algorithm 2: Deep Q-learning algorithm
1: Initialize replay memory D to capacity N
2: Initialize action-value function q̂θ with random

weights θ
3: Initialize target action-value function q̂Θ, with

weights Θ = θ
4: for each episode j do
5: Initialize state s0

6: for t = 1, . . . , Tj in episode j do
7: sample p ∼ U(0, 1)
8: if p < ε then
9: select a random action uniformly at ∼ A

10: else
11: select at = argmaxa (q̂θ(st, a)).
12: end if
13: Execute action at and observe reward rt and state

st+1

14: Store transition (st, at, rt, st+1) in D
15: Sample random batch (sj , aj , rj , sj+1) uniformly

from D

16: Set yj ←

{
rj , for terminal sj+1

rj + γmax
a

q̂Θ(sj+1, a), otherwise

17: Perform an SGD step on (yj − q̂θ (sj , aj ; θ))
2 with

respect to the network parameters θ
18: Every C steps update q̂Θ ← q̂θ
19: end for
20: end for

pedal that the user controls (Fig. 1). There are six rows of
bricks yielding more points the higher they are placed.

B. Preprocessing

To reduce the dimensionality of our network we preprocess
the 210 × 160 RGB image by converting to greyscale and
down-sampling. Lastly, we normalise the brightness between
[0, 1] and ensure the score is cropped out; preventing our neural
network from learning from the in-game text, see Fig. 1. We
denote this preprocessing as φ such that φ(ft) = xt, resulting
in a 84× 84 pixel image.

Fig. 1. The preprocessing filter applied to a frame in Breakout

Once preprocessed we stack four consecutive frames to
construct the state st = (xt−3, xt−2, xt−1, xt), which we

C2B: PLAYING BREAKOUT WITH DQN

assume to fulfill the Markov property since it captures both
direction and speed of in-game objects. New frames are then
added by the first in first out (FIFO) principle. Our motivation
for these choices lies in the earlier successes of [2], [5] which
employ the same technique.

C. Neural Network

As covered earlier, we make use of a neural network to
approximate the q-function. This network takes as input a state
st and returns a q-value for each action available to our agent
at time t. One could alternatively pass state-action tuples to
the network, returning a scalar q-value. However, this requires
a separate forward pass through the network for each action,
increasing the computational cost linearly with the number of
actions available.

Fig. 2. Our network consists of two convolutional networks followed by two
fully connected layers, and a masking feature, Ω. The mask is applied via
element-wise multiplication, and is a vector of boolean elements with size A.
The hidden layers’ parameters are taken from [5].

We adopt instead a similar neural network architecture to
the ones used in [5], with the addition of a masking feature
Ω. The network consists of two convolutional layers, the first
of which takes our state st as input. This layer consists of
16 8 × 8 filters with a stride of 4 and a rectified linear unit
(ReLU) activation function. The following layer convolves 32
4×4 filters with stride set at 2 and the same activation function.
The final hidden layer is fully connected with 256 neurons and
ReLU activation, followed by a fully connected output layer
with one output for each possible action. This final outcome
is then element-wise multiplied with Ω, a vector of boolean
values ωi of the same size as A. During predictions the mask
is set as ωi = 1,∀i. During training we set ωk = 1 and
ωi = 0 for i 6= k, where k corresponds to the action taken in
that iteration.

Fig. 3. Our results of average game score during training. Compared to the
results of [5] (bottom). One training epoch corresponds to 50,000 learning
batches to the neural network.

The minimization of the loss function L(θ) is done using
RMSProp, an SGD method including momentum [9]. We also
bound the gradient between [−1, 1] (clip-norm), reducing the
likelihood of SGD diverging. This could, however, reduce
the speed of convergence. Finally, the initial values of the
parameters θ are set using a normal distribution N(0,

√
2/n)

in the two convolutional layers. For the fully connected layer,
the parameters are initialized using a uniform distribution
[−k, k], where k =

√
6/(n+m). Here n is the number of

input units and m the number of output units in the weight
tensors [10]. For a full list of hyperparameters see Appendix.

IV. RESULTS

Training our algorithm for 5,000,000 learning batches (100
training epochs) yielded the results shown in Fig. 3 and 4.
These have been plotted side by side with the state of the art
results recorded from [5].

After training our agent we applied an ε-greedy policy with
ε = 0.05. We record the result of this in Fig. 5 together with
the corresponding scores of a random-action agent, as well as
a typical human score as listed in [5].

Type of Player Average score
Our agent* 20
Agent in [5] 168
Random agent 1.2
Human player 31

Fig. 5. *Average scores after 5 million learning iterations. We compare this
to: a random-action agent, a typical human score and agent as recorded in
[5]. Our average is calculated over one epoch.

C2B: PLAYING BREAKOUT WITH DQN

Fig. 4. Our results of average maxa q̂ during training (top). These are
evaluated on a set of 5000 states sampled prior to training. Comparable to
the results of [5] (bottom). One training epoch corresponds to 50,000 learning
batches to the neural network.

V. DISCUSSION AND ANALYSIS

A. Performance

By reviewing Fig. 3 we can be certain that our agent is,
in fact, learning how to play Breakout. The learning rate is
however comparatively slower than that achieved by [5]. After
training for 5,000,000 learning iterations and using an ε-greedy
policy with ε = 0.05, our agent achieved a mean score of
20 per episode. Comparatively [5] averaged approximately
168. We note however that our predicted q-values throughout
training are very similar to [5], as shown in Fig. 4. This leads
us to believe that the differing results are not a consequence
of our implementation of the Deep Q-learning algorithm.

We suspect that the Neural network architecture is in part to
blame. There are a number of ambiguities in the original paper
[5]. For instance the minimization of the cost function can be
complemented with techniques like gradient clipping which
limits the maximum values of the gradients. Here [5] does not
explicitly mention if this is applied, whereas a later paper on
the topic does [2]. We chose to apply the error clipping as
mentioned in the latter.

The definition of terminal states is another aspect that could
affect the result. The end of a game (loss of five lives) is how
the terminal state is predefined in ALE and chosen in this
paper. One could, however, choose the loss of one to be the
terminal state definition, which most likely would affect the
final result.

We also make use of the predefined action space in ALE,
that is, A =[’NOOP’, ’FIRE’, ’RIGHT’, ’LEFT’]. Where

’NOOP’ corresponds to performing no actions, and ’FIRE’
is how to restart after losing a life. One could therefore
implement a ’FIRE’-action after every life loss and thereby
remove it from the actions available to the agent. This would
then result in an action space with a smaller dimension —
possibly speeding up the training of the agent. We are unsure
how this was implemented in [5], as it appears they do not
make use of the GYM library.

We discovered several such subtleties in our review of [5]
and resorted to our best judgment or, when possible, the
parameters used in [2]. This is in part due to the computation
time involved in experimenting with hyperparameters.

B. Implementation

Correlating the changes in our hyper-parameters or imple-
mentations with the performance of the code proved difficult.
The computational time required to produce any reliable
results was for our hardware in the time scale of several
days, making an iterative process impossible with our time
constraints. Instead, we made several changes at a time, relying
heavily on the parameters that have been shown to be effective.

Despite this, we were able to identify a few factors that sped
up our code significantly. The addition of a masking layer
meant we could skip a forward pass through the network,
speeding up calculations. We also vectorized our code with
Numpy arrays, which have been heavily pre-optimized and
are significantly faster than native python data structures,
particularity if the code is run over many threads in a GPU.

Adapting our definition of what constitutes our Markov
state also improved the agent’s learning rate. When
two different states had overlapping frames, that is
st+k = (xt−3+4k, xt−2+4k, xt−1+4k, xt+4k) and st+k+1 =
(xt−2+4k, xt−1+4k, xt+4k, xt+1+4k) the agent’s learning rate
was extremely slow. This was improved by redefining the
states such that st+k = (xt−3+4k, xt−2+4k, xt−1+4k, xt+4k)
and st+k+1 = (xt+1+4k, xt+1+4k, xt+3+4k, xt+4+4k). We
suspect this was similarly applied in [5], however it is not
explicitly stated.

C. Future adaptations

Occasionally new techniques emerge in RL that are shown
to improve the agent’s performance, such as the following.

Double Q-learning: Double Q-learning attempts to counter-
act any overestimation of the action value predictions. It does
this by introducing a second q-function, used to decouple the
action-selection from the q-value prediction. The TD-target is
then estimated using both networks,

r(st, at) + α q

st+1, argmaxa q (st+1, a)︸ ︷︷ ︸
current network


︸ ︷︷ ︸

target network

.

This is also known as actor critic and improves the estimation
of q-values — resulting in a more stable training [11].

C2B: PLAYING BREAKOUT WITH DQN

Prioritized Experience Replay: We currently make use of
Replay memory to break the TD-target correlations. Sampled
transitions are stored in the memory uniformly, regardless
of their significance. Prioritized Experience Replay (PER)
exploits that the RL agent learns more efficiently from some
transitions than from others. PER introduces a non-uniform
probability distribution in the replay memory, based on the
significance of the stored transitions. This biases the agent to
learn more selectively from those, improving the learning rate
[12].

Parallel Threads: The efficiency of the DQN algorithm
could be improved by running several game environments in
parallel. Each instance of the environment has a respective
actor, which explores the state-action space independently.
This method does not make use of a replay memory. The
algorithm relies instead on the aforementioned actors to decor-
relate the transitions sent to the neural network. This kind
of multi-threaded architecture can be efficiently applied to
powerful machines with multiple cores or GPUs, increasing
the performance of the algorithm [13].

VI. CONCLUSION

In this paper we implement a reinforcement learning algo-
rithm with the aim to reproduce the result in [5]. After training
our agent learns to play Breakout just beneath the level of a
typical human, with an average score of 20 compared to the
human score of 31 and a result of 168 achieved by [5].

We discuss and attribute a few probable causes for this dis-
crepancy, primarily in the form of ambiguities in the network
configuration of [5]. Due to the heavy computational load of
training the agent; an iterative and experimental process was
not possible.

Finally, we discuss what improvements could be made to
better the agent in the future. We introduce a number of
possible techniques from recent studies: Double Q-learning,
Prioritized Experience Replay, and Parallel Threads.

APPENDIX
HYPERPARAMETERS

ACKNOWLEDGMENT

The authors would like to thank their supervisors Alessio
Russo and Damianos Tranos for their invaluable support and
guidance throughout the project.

REFERENCES

[1] Y. Shoham, R. Perrault, E. Brynjolfsson, J. Clark, J. Manyika, J. C.
Niebles, T. Lyons, J. Etchemendy, B. Grosz, and Z. Bauer. (2018)
The ai index 2018 annual report. AI Index Steering Committee,
Human-Centered AI Initiative. Stanford University, Stanford, CA.
Accessed Feb. 2019. [Online]. Available: http://cdn.aiindex.org/2018/
AI%20Index%202018%20Annual%20Report.pdf

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[3] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” Jour-
nal of Artificial Intelligence Research, vol. 47, pp. 253–279, Jun. 2013.

[4] C. J. C. H. Watkins, “Learning from delayed rewards,” King’s College,
May 1989. [Online]. Available: http://www.cs.rhul.ac.uk/∼chrisw/new
thesis.pdf

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep
reinforcement learning,” CoRR, vol. abs/1312.5602, Feb. 2013.
[Online]. Available: http://arxiv.org/abs/1312.5602

[6] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. New Jersey: John Wiley & Sons, 2014.

[7] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA: MIT Press, 1998.

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba. (Jun. 2016) Openai gym. [Online]. Available:
https://arxiv.org/pdf/1606.01540

[9] T. Tieleman and G. Hinton, “Rmsprop gradient optimization,”
accessed Apr. 2019. [Online]. Available: http://https://www.cs.toronto.
edu/∼tijmen/csc321/slides/lecture slides lec6.pdf

[10] F. Chollet et al. (2015) Keras. [Online]. Available: https://keras.io
[11] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning

with double q-learning,” CoRR, vol. abs/1509.06461, 2015. [Online].
Available: http://arxiv.org/abs/1509.06461

[12] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” CoRR, vol. abs/1511.05952, 2016.

[13] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Sil-
ver, and K. Kavukcuoglu, “Reinforcement learning with unsupervised
auxiliary tasks,” arXiv preprint arXiv:1611.05397, 2016.

